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•  To analyze eye-tracking data the viewed image is often 
 divided into areas of interest (AOI)

•  Per AOI, summary statistics (e.g., proportion of �xations or 
 dwell  time) is often computed

•  Temporal dynamics is either entirely lost or signi�cantly
 reduced by “binning” the data

•  Here I introduce SPLOT (smoothed proportion of looks over 
 time) method for analyzing the eye movement dynamics 
 across AOIs

•  Visualize AIO time-course without loosing temporal
 resolution

•  Perform statistical analysis using cluster-based 
 permutation and without loosing statistical power
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Reported vs Missed
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B
Application to real data

With SPLOT you can

Step 1: 
generating binary time-course

•  The eye movement sequence is transformed into a 
 sequence of �xations and their corresponding durations
 using any event-detection algorithm 

•  Then, �xations are transformed into “looks”. The looks are
 coded as a binary variable, with ‘1’ assigned to each time
 point that belongs to a �xation falling inside the AOI and ‘0’ 
 assigned to all other time points in the trial.  

•  The total number of time points in a trial is determined by 
 the sampling rate of the eye-tracker.

Step 2: 
temporal smoothing and
averaging across trials

•  To reduce the noise present on individual trials and to 
 convert a discreet signal into a continuous one, the square 
 wave sequences are convolved with Gaussian kernel of a 
 chosen size

•  Trials can be averaged, producing an average time-course of
 proportion of looks at AOI for each participant (or image)

Step 3: cluster-based permutation testing

•  When performing a statistical test on each individual time point, clusters of signi�cant 
 points will emerge, since the time points are not independent of each other.  Signi�cance
 should be tested on the level of clusters

•  Cluster-based permutation testing involves building a distribution of the cluster-based
 test statistic under the null hypothesis and comparing the observed cluster-based 
 statistic to it. Any cluster in the observed data, whose test statistic exceeds the 95th
 percentile (which corresponds to a p-value of 0.05) is considered signi�cant

•  Building a permutation distribution is di�erent depending on whether two conditions 
 are compared to each other or a single condition is compared to a baseline (see article for
 details)

• The average time-courses of looking at the abnormality were di�erent, depending on whether the image
 was diagnosed correctly or not. Participants looked at the abnormality signi�cantly more often when it was 
 reported.  There were two large signi�cant clusters (0-6 seconds and 7 - 15 sec)  

•  To analyze whether there were peaks in the looks at abnormality, the time-courses for each condition were 
 compared to their respective average time-courses. This analysis showed 5 clusters for the reported condition,
 in which only the �rst two  (0-1.8 sec) reached signi�cance . For the missed condition, there were 2 clusters
 and only the �rst one (0-1 sec) was statistically signi�cant

• Same analyses were performed but t-tests with Bonferroni correction were used instead of permutations
 tests.

•  Although the overall results were similar, many time points did not reach signi�cance. Adding more bins
 or extending the epoch would render even the strongest e�ects not signi�cant. 

TOP: SPLOT applied to eye-tracking data of radiologists
diagnosing chest X-rays

BOTTOM: Momentous proportion over time, 60 bins of 250 ms
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